IES 302: Quiz 3 Solution

In this question, the population contains $N=3$ members: $\left\{a_{1}=1, a_{2}=1, a_{3}=3\right\}$. The size of the random sample is $n=2$. So, the random sample contains two random variables $\left\{X_{1}, X_{2}\right\}$.

There are $\binom{N}{n}=\binom{3}{2}=3$ possible samples. (This is sampling without replacement.)
The members in the samples and the corresponding sample means are listed in the table below:

X_{1}	X_{2}	$\begin{gathered} \text { Sample mean } \\ \bar{X}=\frac{1}{2}\left(X_{1}+X_{2}\right) \end{gathered}$
$a_{1}=1$	$a_{2}=1$	1
$a_{1}=1$	$a_{3}=3$	2
$a_{2}=1$	$a_{3}=3$	2

These three possibilities happen with equal probability. So, the pmf (distribution) of the sample mean is given by

$$
p_{\bar{X}}(\bar{x})= \begin{cases}1 / 3, & \bar{x}=1, \\ 2 / 3, & \bar{x}=2, \\ 0, & \text { otherwise. }\end{cases}
$$

The expected value of the sample mean is given by

$$
\mathbb{E}[\bar{X}]=\sum_{\bar{x}} \bar{x} p_{\bar{x}}(\bar{x})=1 \times \frac{1}{3}+2 \times \frac{2}{3}=\frac{5}{3} . .
$$

To find the variance, we first find

$$
\mathbb{E}\left[\bar{X}^{2}\right]=\sum_{\bar{x}} \bar{x}^{2} p_{\bar{X}}(\bar{x})=1^{2} \times \frac{1}{3}+2^{2} \times \frac{2}{3}=\frac{9}{3}=3
$$

Therefore,

$$
\operatorname{Var}[\bar{X}]=\mathbb{E}\left[\bar{X}^{2}\right]-(\mathbb{E}[\bar{X}])^{2}=3-\left(\frac{5}{3}\right)^{2}=\frac{2}{9} .
$$

